“Seek-Lock-Strike!” Animated

In “Seek-Lock-Strike!” Again, we obtained the missile’s trajectory. Namely,

x = \frac{1}{2} \left(\frac{(b-y)^{r+1}}{b^r \cdot f \cdot (r+1)}-\frac{b^r \cdot f \cdot (b-y)^{1-r}}{1-r}\right) -k\quad\quad\quad(*)

where

f = \frac{a}{b}+\sqrt{1+(\frac{a}{b})^2},

k = \frac{b}{2}\left(\frac{1}{f \cdot (r+1)}-\frac{f}{1-r}\right).

Since the fighter jet maintains its altitude (y= b), the missile must strike it at (x_*, b). Setting y=b in (*) gives x_* = -k.

Hence, we can plot (*):

Fig. 1 a = 100\;m, b=3000\;m, v_a=1500\;ms^{-1}, v_m=2000\;ms^{-1}

We can also illustrate “Seek-Lock-Strike” in an animation:

Fig. 2 a = 100\;m, b=3000\;m, v_a=1500\;ms^{-1}, v_m=2000\;ms^{-1}

Fig. 3 a = -2500\;m, b=3000\;m, v_a=1500\;ms^{-1}, v_m=2000\;ms^{-1}

Advertisement