“Seek-Lock-Strike!” Again

We can derive a different governing equation for the missile in “Seek-Lock-Strike!“.

Fig. 1

Looking from a different viewpoint (Fig. 1), we see

\frac{dx}{dy} = \frac{a+v_at-x}{b-y}.\quad\quad\quad(1)

Solving (1) for t,

t = -\frac{\frac{dx}{dy}y-b\frac{dx}{dy}-x+a}{v_a}.\quad\quad\quad(2)

We also have

v_m t = \int\limits_{0}^{y}\sqrt{1+(\frac{dx}{dy})^2} \implies t = \frac{\int\limits_{0}^{y}\sqrt{1+(\frac{dx}{dy})^2}\;dy}{v_m}.\quad\quad\quad(3)

Equate (1) and (2) gives

-\frac{\frac{dx}{dy}y-b\frac{dx}{dy}-x+a}{v_a}-\frac{\int\limits_{0}^{y}\sqrt{1+(\frac{dx}{dy})^2}\;dy}{v_m} = 0.\quad\quad\quad(4)

The governing eqaution emerges after differentiate (4) with respect to x:

-\frac{d^2x}{dy^2}y+b\frac{d^2x}{dy^2}-\frac{v_a\sqrt{1+(\frac{dx}{dy})^2}}{v_m} = 0.\quad\quad\quad(5)

We let p = \frac{dx}{dy} so \frac{d^2x}{dy^2} = \frac{d}{dy}\left(\frac{dx}{dy}\right)=\frac{dp}{dy} and express (5) as

\frac{dp}{dy}(b-y) -r\sqrt{1+(\frac{dx}{dy})^2} = 0\quad\quad\quad(*)

where r = \frac{v_a}{v_m}.

Fig. 2

Using Omega CAS Explorer, we compute the missile’s striking time t_* (see Fig. 3). It agrees with the result obtained previously.

Fig. 3

Exercise-1 Obtain the missile’s trajectory from (*).

One thought on ““Seek-Lock-Strike!” Again

  1. Pingback: “Seek-Lock-Strike!” Animated |

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s