Newton’s Pi Simplified


We know from “arcsin” :

\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}.

Integrate from 0 to x\; (0<x<1):

\int\limits_{0}^{x}\frac{d}{dx}\arcsin(x)\;dx = \int\limits_{0}^{x}\frac{1}{\sqrt{1-x^2}}\;dx

gives

\arcsin(x)\bigg|_{0}^{x} = \int\limits_{0}^{x}\frac{1}{\sqrt{1-x^2}}\;dx.

i.e.,

\arcsin(x) =  \int\limits_{0}^{x}\frac{1}{\sqrt{1-x^2}}\;dx.\quad\quad\quad(\star)

Rewrite the integrand \frac{1}{\sqrt{1-x^2}} as

(1-x^2)^{-\frac{1}{2}}= (1+(-x^2))^{-\frac{1}{2}}

so that by the extended binomial theorem (see “A Gem from Issac Newton“),

\frac{1}{\sqrt{1-x^2}}\overset{(A-1)}{=} \sum\limits_{i=0}^{\infty}\binom{-\frac{1}{2}}{i}1^{-\frac{1}{2}-i}(-x^2)^i.

Hence,

\frac{1}{\sqrt{1-x^2}} = \sum\limits_{i=0}^{\infty}\binom{-\frac{1}{2}}{i}(-1)^i x^{2i}.

And,

\int\limits_{0}^{x}\frac{1}{\sqrt{1-x^2}}\;dx=\int\limits_{0}^{x}\sum\limits_{i=0}^{\infty}\binom{-\frac{1}{2}}{i}(-1)^i x^{2i}\;dx = \sum\limits_{i=0}^{\infty}\int\limits_{0}^{x}\binom{-\frac{1}{2}}{i}(-1)^i x^{2i}\;dx = \sum\limits_{i=0}^{\infty}\binom{-\frac{1}{2}}{i}(-1)^i \frac{x^{2i+1}}{2i+1}.

It follows that by (\star),

\arcsin(x)  = \sum\limits_{i=0}^{\infty}\binom{-\frac{1}{2}}{i}(-1)^i \frac{x^{2i+1}}{2i+1}.

Let x=\frac{1}{2}, we have

\frac{\pi}{6} = \sum\limits_{i=0}^{\infty}\binom{-\frac{1}{2}}{i}(-1)^i \frac{(\frac{1}{2})^{2i+1}}{2i+1}.

And so,

\pi = 6 \sum\limits_{i=0}^{\infty}\binom{-\frac{1}{2}}{i}(-1)^i \frac{1}{2^{2i+1} 2i+1}.

Fig. 1

See also “Newton’s Pi“.


Given 0 < x <1, prove:

|-x^2| < 1.\quad\quad\quad(A-1)

proof

Since 0<x<1 \implies 0< x^2 < 1, |-x^2|=|x^2|=x^2 < 1.


Exercise-1 Compute \pi by applying the extended binomial theorem to \frac{\pi}{6} = \int\limits_{0}^{\frac{1}{\sqrt{3}}}\frac{1}{1+x^2}\;dx.

Exercise-2 Can we compute \pi by applying the extended binomial theorem to \frac{\pi}{4}=\int\limits_{0}^{1}\frac{1}{1+x^2}\;dx? Explain.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s