A Gem from Isaac Newton

The Binomial Theorem (see “Double Feature on Christmas Day“, “Prelude to Taylor’s theorem“) states:

(x+y)^n = \sum\limits_{i=0}^{n} \binom{n}{i}x^{n-i}y^i, \quad n \in \mathbb{N}.

Provide x and y are suitably restricted, there is an Extended Binomial Theorem. Namely,

(x+y)^r = \sum\limits_{i=0}^{\infty} \binom{r}{i}x^{r-i}y^i, \underline{|\frac{x}{y}|<1}, r \in \mathbb{R}

where \binom{r}{i} \overset{\Delta}{=} \frac{r(r-1)(r-2)...(r-i+1)}{i!}.

Although Issac Newton is generally credited with the Extended Binomial Theorem, he only derived the germane formula for any rational exponent (i.e., r \in \mathbb{Q}).

We offer a complete proof as follows:

Let

f(t) = (1+t)^r,\;|t|<1, r \in \mathbb{R}.\quad\quad\quad(1)

Differentiate (1) with respect to t yields

f'(t) = r(1+t)^{r-1}.

We have

(1+t)f'(t) = (1+t)\cdot r(1+t)^{r-1} = r(1+t)^r.

That is,

(1+t)f'(t) = rf(t).

From

f(0) = (1+0)^r =1,

we see that f(t) = (1+t)^r is a solution of initial-value problem

\begin{cases} (1+t)z'(t)=rz(t) \\ z(0) = 1 \end{cases}\quad\quad\quad(2)

By (A-1), we also have

g(t) = \sum\limits_{i=0}^{\infty}\binom{r}{i}\cdot t^{i}, |t|<1, r \in \mathbb{R}.\quad\quad\quad(3)

Express (3) as

g(t) = \binom{r}{0}t^0 + \sum\limits_{i=1}^{\infty}\binom{r}{i}t^i=1+ \sum\limits_{i=1}^{\infty}\binom{r}{i}t^i

and then differentiate it with respect to t:

g'(t) = \sum\limits_{i=0}^{\infty}\binom{r}{i}\cdot i\cdot t^{i-1}\overset{(A-2)}{=} r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^{i-1}

gives us

(1+t)g'(t) = (t+1)\cdot r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^{i-1}

= r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^i + r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^{i-1}

= r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^i + r\sum\limits_{k=0}^{\infty}\binom{r-1}{k}t^{k}

= r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^i + r\left(\binom{r-1}{0}t^0+\sum\limits_{k=1}^{\infty}\binom{r-1}{k}t^k\right)

= r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^i + r\left(1+\sum\limits_{i=1}^{\infty}\binom{r-1}{i}t^i\right)

= r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^i + r + r\sum\limits_{i=1}^{\infty}\binom{r-1}{i}t^i

= r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}t^i + r\sum\limits_{i=1}^{\infty}\binom{r-1}{i}t^i+r

= r\sum\limits_{i=1}^{\infty}\left(\binom{r-1}{i-1} + \binom{r-1}{i}\right)t^i+r

\overset{(A-3)}{=} r\sum\limits_{i=1}^{\infty}\binom{r}{i}t^i+r

= r\sum\limits_{i=1}^{\infty}\binom{r}{i}t^i+r\binom{r}{0}t^0

= r\left(\sum\limits_{i=1}^{\infty}\binom{r}{i}t^i+\binom{r}{0}t^0\right)

= r\sum\limits_{i=0}^{\infty}\binom{r}{i}t^i

\overset{(3)}{=} r\cdot g(t).

i.e.,

(1+t)g'(t) = rg(t).

Since

g(0) = 1+\sum\limits_{i=1}^{\infty}\binom{r}{i}0^i = 1,

we see that g(t) is also a solution of initial-value problem (2).

Hence, by the Uniqueness theorem (see Coddington: An Introduction to Ordinary Differential Equations, p. 105),

f(t) = g(t).

And so,

(1+t)^r = \sum\limits_{i=0}^{\infty}\binom{r}{i}t^i.

Consequently, for |\frac{x}{y}| <1,

(1+\frac{x}{y})^r = \sum\limits_{i=0}^{\infty}\binom{r}{i}(\frac{x}{y})^i.

Multiply y^r throughout, we obtain

(x+y)^r = y^r\sum\limits_{i=0}^{\infty}\binom{r}{i}x^iy^{-i}.

i.e.,

(x + y)^r = \sum\limits_{i=0}^{\infty}\binom{r}{i}x^iy^{r-i}.


Prove (A-1) is convergent:

\sum\limits_{i=1}^{\infty}\binom{r}{i}\cdot t^{i}, |t|<1\quad\quad\quad(A-1)

Proof

\frac{\binom{r}{i+1}t^{i+1}}{\binom{r}{i}t^i}

= \frac{\frac{r(r-1)(r-2)...(r-i+1)(r-(i+1)+1)}{(i+1)!}}{\frac{r(r-1)(r-2)...(r-i+1)}{i!}}\cdot t

=\frac{r(r-1)(r-2)...(r-i+1)(r-(i+1)+1)}{(i+1)!}\cdot \frac{i!}{r(r-1)(r-2)...(r-i+1)}\cdot t

= \frac{r-(i+1)+1}{(i+1)i!}i!\cdot t

=\frac{r-(i+1)+1}{i+1}\cdot t

\lim\limits_{i\rightarrow \infty}\bigg|\frac{\binom{r}{i+1}t^{i+1}}{\binom{r}{i}t^i}\bigg|=\lim\limits_{i\rightarrow \infty}|\frac{r-(i+1)+1}{i+1}\cdot t|=\lim\limits_{i\rightarrow \infty}|\frac{i-r}{i+1}|\cdot |t|=|t|\overset{}{<}1


Prove

\sum\limits_{i=1}^{\infty}\binom{r}{i}\cdot i\cdot t^{i-1} = r\sum\limits_{i=1}^{\infty}\binom{r-1}{i-1}\cdot t^{i-1}\quad\quad\quad(A-2)

Proof

\binom{r}{i} = \frac{r(r-1)(r-2)...(r-i+1)}{i!}

= \frac{r}{i}\cdot\frac{(r-1)(r-1-1)...(r-1+1-i+1)}{(i-1)!}

= \frac{r}{i}\cdot\frac{(r-1)(r-1-1)...(r-1-i+1+1)}{(i-1)!}

= \frac{r}{i}\cdot\frac{(r-1)(r-1-1)(r-1-2)...(r-1-(i-1)+1)}{(i-1)!}

= \frac{r}{i}\binom{r-1}{i-1}

that is,

\binom{r}{i} = \frac{r}{i}\binom{r-1}{i-1}.

Therefore,

\sum\limits_{i=1}^{\infty}\boxed{\binom{r}{i}}\cdot i\cdot t^{i-1} =\sum\limits_{i=1}^{\infty}\boxed{\frac{r}{i}\binom{r-1}{i-1}}\cdot i\cdot t^{i-1}=r\sum\limits_{k=1}^{\infty}\binom{i-1}{i-1}t^{i-1}.


Prove

\binom{r-1}{i-1} + \binom{r-1}{i} = \binom{r}{i}\quad\quad\quad(A-3)

Proof

\binom{r-1}{i-1} + \binom{r-1}{i}

= \frac{(r-1)((r-1)-1)...((r-1)-(i-1)+1)}{(i-1)!} + \frac{(r-1)((r-1)-1)...((r-1)-i+1)}{i!}

= \frac{(r-1)((r-1)-1)((r-1)-2)...(r-(i-1)+1)}{(i-1)!} +  \frac{(r-1)((r-1)-1)((r-1)-2)...((r-1)-(i-1)+1)((r-1)-i+1)}{(i)!}

= (r-1)((r-1)-1)((r-1)-2)...((r-1)-(i-1)+1)\cdot \left(\frac{1}{(i-1)!} + \frac{(r-1)-i+1}{i!}\right)

= \frac{(r-1)(r-1-1)(r-1-2)...(r-1-(i-1)+1)}{(i-1)!}\cdot \left(1+\frac{(r-1)-i+1}{i}\right)

= \frac{(r-1)(r-1-1)(r-1-2)...(r-1-(i-1)+1)}{(i-1)!}\cdot \left(\frac{i + (r-1)-i+1}{i}\right)

= \frac{(r-1)(r-1-1)(r-1-2)...(r-1-(i-1)+1)}{(i-1)!}\cdot\frac{r}{i}

= \frac{r(r-1)(r-2)...(r-1-i+1+1)}{i(i-1)!}

= \frac{r(r-1)(r-2)...(r-i+1)}{i!}

= \binom{r}{i}.


Advertisement

One thought on “A Gem from Isaac Newton

  1. Pingback: Newton’s Pi |

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s