A Not So Sinful Delight

Problem:

Show that if x+\frac{1}{x}=1 then x^7+\frac{1}{x^7}=1.


Solution-1:

From

x+\frac{1}{x} = 1,\quad\quad\quad(0)

we have

x^2+1=x\quad\quad\quad(1)

\implies x^2=x-1\quad\quad\quad(2)

\implies x^3=x^2-x\overset{(2)}{=}(x-1)-x=-1\quad\quad\quad(3)

\implies x^6=1\quad\quad\quad(4)

\implies x^7=x\quad\quad\quad(5)

\implies x^7+\frac{1}{x^7}\overset{(5)}{=}x+\frac{1}{x}\overset{(0)}{=}1.


Solution-2:


Exercise-1 Given x^3+4x=8, determine the value of x^7+64x^2.

Advertisement