# A CAS-Aided Analysis of Rocket Flight Performance Optimization

Research on rocket flight performance has shown that typical single-stage rockets cannot serve as the carrier vehicle for launching satellite into orbit. Instead, multi-stage rockets are used in practice with two-stage rockets being the most common. The jettisoning of stages allows decreasing the mass of the remaining rocket in order for it to accelerate rapidly till reaching its desired velocity and height.

Optimizing flight performance is a non-trivial problem in the field of rocketry. This post examines a two-stage rocket flight performance through rigorous mathematical analysis. A Computer Algebra System (CAS) is employed to carry out the symbolic computations in the process. CAS has been proven to be an efficient tool in carry out laborious mathematical calculations for decades. This post reports on the process and the results of using Omega CAS explorer, a Maxima based CAS to solve this complex problem.

A two-stage rocket consists of a payload $P$ propelled by two stages of masses $m_1$ (first stage) and $m_2$(second stage), both with structure factor $1-e$. The exhaust speed of the first stage is $c_1$, and of second stage $c_2$. The initial total mass, $m_1 + m_2$ is fixed. The ratio $b = \frac{P}{m_1+m_2}$ is small.

Based on Tsiolkovsky’s equation, we derived the multi-stage rocket flight equation $[1]$. For a two-stage rocket, the final velocity can be calculated from the following:

$v = -c_1\log(1-\frac{em_1}{m_1+m_2+P}) - c_2\log(1-\frac{em_2}{m_2+P})\quad\quad\quad(1)$

Let $a = \frac{m_2}{m_1+m_2}$, so that (1) becomes

$v=-c_1\log(1-\frac{e(1-a)}{1+b}) - c_2\log(1-\frac{ea}{a+b})\quad\quad\quad(2)$

where $00, 00, c_2>0$.

We seek an appropriate value of $a$ that maximizes $v$.

Consider $v$ as a function of $a$, its derivative $\frac{d}{da}v$ is computed (see Fig. 1)

Fig. 1

We have $\frac{d}{da}v = -\frac{e(abc_2e+abc_1e+a^2c_1e+b^2c_2+bc_2-b^2c_1-2abc_1-a^2c_1)}{(b+a)(ae-b-a)(ae-e+b+1)}$.

That is, $\frac{d}{da}v = \frac{e(abc_2e+abc_1e+a^2c_1e+b^2c_2+bc_2-b^2c_1-2abc_1-a^2c_1)}{(b+a)(b+a(1-e))(ae+b+1-e)}$.

Fig. 2

As shown in Fig. 2, $\frac{d}{da}v$ can be expressed as

$\frac{d}{da}v = \frac{e(A_2a^2+B_2a+C_2)}{(b+a)(b+a(1-e))(ae+b+1-e)}\quad\quad\quad(3)$

Notice that $A_2 = c_1(e-1) = -c_1(1-e) < 0$.

Solving $\frac{d}{da}v = 0$ for $a$ gives two solutions $a_1, a_2$ (see Fig. 3)

Fig. 3

We rewrite the expression under the square root in $a_1$ and $a_2$ as a quadratic function of $e$: $Ae^2+Be+ C$and compute $B^2-4AC$ (see Fig. 4)

Fig. 4

If $c_1 \ne c_2$, $B^2-4AC< 0$. It implies that $Ae^2+Be+C$ is positive since $A>0$. When $c_1=c_2$, $Ae^2+Be+C$ where $A>0, 0 is still positive since as a result of $B^2-4AC=0$, the zero point of function $Ax^2+Bx+C$ is $\frac{-B}{2A} = \frac{(8b^2+8b)c_1^2}{2(b^2c_1^2+(2b^2+4b)c_1^2+b^2c_1^2)} = 1$.

The expression under the square root is positive means both $a_1$ and $a_2$ are real-valued and $a_1-a_2 >0$ (see Fig. 5), i.e., $a_1 > a_2$.

Fig. 5

From (3) where $A_2 < 0$, we deduce the following:

For all $a \ge 0$, if $a>a_1$ then $\frac{d}{da}v(a) < 0 \quad\quad\quad(\star)$

For all $a \ge 0$, if $a_2 then $\frac{d}{da}v(a) >0 \quad\quad\quad(\star\star)$

For all $a \ge 0$, if $a then $\frac{d}{da}v(a) < 0 \quad\quad\quad(\star\star\star)$

Fig. 6

Moreover, from Fig. 6,

$\frac{d}{da}v(0)\cdot \frac{d}{da}v(1) = -\frac{e^2(c_1e+bc_2-bc_1-c_1)(c_2e-bc_2-c_2+bc_1)}{b(b+1)(e-b-1)^2}=-\frac{e^2(c_1e+bc_2-bc_1-c_1)(c_2e-bc_2-c_2+bc_1)}{b(b+1)(b+1-e)^2}$.

Since the expression in the numerator of $\frac{d}{da}v(0)\cdot \frac{d}{da}v(1)$, namely

$(c_1e + bc_2-bc_1-c_1)(c_2e-bc_2-c_2 +bc_1)$

$= (c_1(e-1-b) + bc_2)(c_2(e-1-b)+bc_1)$

$=c_1c_2(e-1-b)^2+b^2c_1c_2+b(c_1^2+c_2^2)(e-1-b)$

$\ge c_1c_2(e-1-b)^2 + b^2c_1c_2+2bc_1c_2(e-1-b)$

$=c_1c_2(e-1-b+b)^2$

$=c_1c_2(e-1)^2>0$,

It follows that

$\frac{d}{da}v(0) \cdot \frac{d}{da}v(1) < 0\quad\quad\quad(4)$

The implication is that $\frac{d}{da}v$ has at least one zero point between $0$ and $1$.

However, if both $a_1$ and $a_2$, the two known zero points of $\frac{d}{da}v$ are between $0$ and $1$, by ($\star$) and ($\star\star\star$), $\frac{d}{da}v(0)\cdot \frac{d}{da}v(1)$ must be positive, which contradicts (4). Therefore, $\frac{d}{da}v$ must have only one zero point between $0$ and $1$.

We will proceed to show that the only zero lies between $0$ and $1$ is $a_1$.

There are two cases to consider.

Case 1 ($c_1 \le c_2$) $\frac{d}{da} v(0)=\frac{e(bc_2(1-e)+b^2(c_2-c1))}{b^2(b+1-e)} >0$ since $b>0, c_2>0, 0 and $c_2-c_1>0$. But this contradicts ($\star\star\star$). Therefore, $a_2$ must not be positive.

Case 2 ($c_1 > c_2$) The denominator of $a_2$ is negative since $c_1 > 0, e < 1$. However, $(-bc_2-bc_1)e + 2bc_1$, the terms not under the square root in the numerator of $a_2$ can be expressed as $bc_1(1-e) + b(c_1-c_2e)$. This is a positive expression since $c_1 > c_2 > 0, 0 implies that $c_1-c_2e > c_1 - c_1e = c_1(1-e) >0$. Therefore, $a_2< 0$.

The fact that only $a_1$ lies between $0$ and $1$, together with ($\star$) and ($\star\star$) proves that $a_1$ is where the global maximum of $v$ occurs.

$a_1$ can be simplified to a Taylor series expansion (see Fig. 7)

Fig. 7

The result $-\frac{b((c_2+c_1)e-2c_1)}{2c_1e-2c_1} - \frac{\sqrt{b}\sqrt{c_2}}{\sqrt{c_1}}$ produced by CAS can be written as $-\sqrt{\frac{bc_2}{c_1}} + O(b)$. However, it is incorrect as $\lim\limits_{b\rightarrow 0} \frac{-\sqrt{\frac{bc_2}{c_1}}+O(b)}{\sqrt{b}} = -\sqrt{\frac{c_2}{c_1}} < 0$ would suggest that $a_1$ is a negative quantity when $b$ is small.

To obtain a correct Taylor series expansion for $a_1$, we rewrite $a_1$ as $\sqrt{b^2D+bE}+bF$ first where

$D=\frac{c_2^2e^2+2c_1c_2e^2+c_1^2e^2-8c_1c_2e+4c_1c_2}{(2c_1-2c_1e)^2}$

$E=\frac{4c_1c_2e^2-8c_1c_2e+4c_1c_2}{(2c_1-2c1e)^2}=\frac{c_2}{c_1}$

$F=\frac{c1e+c_2e-2c_1}{2c_1-2c_1e}$

Its first order Taylor series is then computed (see Fig. 8)

Fig. 8

The first term of the result can be written as $O(b)$. Bring the value of $E$ into the result, we have:

$a_1= \sqrt{bE} + O(b) = \sqrt{\frac{bc_2}{c_1}} + O(b)\quad\quad\quad(6)$

To compute $v(a_1)$ from (6) , we substitute $\sqrt{Db^2+Eb} + Fb$ for $a$ in (2) and compute its Taylor series expansion about $b=0$ (see Fig. 9 )

Fig. 9

Writing its first term as $O(b)$ and substituting the value $E$ yields:

$v = -(c_1+c_2)\log(1-e)+\frac{\sqrt{b}(c_1E^{1/2}+c_2E^{-1/2})}{e-1} + O(b)$

$= -(c_1+c_2)\log(1-e) + \frac{\sqrt{b}(c_1e\sqrt{\frac{c_2}{c_1}}+c_2e\sqrt{\frac{c_1}{c_2}})}{e-1}+ O(b)$

$= -(c_1+c_2)\log(1-e)-2e\frac{\sqrt{c_1c_2b}}{1-e} + O(b)$

It is positive when $b$ is small.

We have shown the time-saving, error-reduction advantages of using CAS to aid manipulation of complex mathematical expressions. On the other hand, we also caution that just as is the cases with any software system, CAS may contain software bugs that need to be detected and weeded out with a well- trained mathematical mind.

References

$[1]$ M. Xue, Viva Rockettry! Part 2 https://vroomlab.wordpress.com/2019/01/31/viva-rocketry-part-2

$[2]$ Omega: A Computer Algebra System Explorer http://www.omega-math.com