Prelude to Taylor’s theorem

As an application of derivative, we may prove the Binomial theorem that concerns the expansion of (1+x)^n as a polynomial. Namely,

(1+x)^n = 1+ a_1 x + a_2 x^2 + ... + a_n x^n\quad\quad\quad(1)

where a_k = \frac{n(n-1)(n-2)...(n-k+1)}{k!}, 1 \leq k \leq n, n \in N.

There are two steps:

Step 1) Prove (1+x)^n can be expressed as a polynomial 1+a_1 x + a_2 x^2 + ... + a_n x^n, i.e.,

(1+x)^n = 1 + \sum\limits_{i=1}^{n}a_i x^i

where a_ks are constants.

Step 2) Show that

a_k = \frac{n(n-1)(n-2)...(n-k+1)}{k!}

We use mathematical induction first.

When n = 1,

(1+x)^1 = 1+x = 1 +a_1 x

where a_1 = 1.

Assume when n=k, (1+x)^kis a polynomial:

(1+x)^k = 1+b_1 x + b_2 x + ... +b_k x^k\quad\quad\quad(2)

When n = k+1,

(1+x)^{k+1} = (1+x)^k (1+x).

By (2), it is

(1+b_1 x+b_2 x^2+ ...+ b_k x^k) (1+x)

= (1+\sum\limits_{i=1}^{k} b_i x^i)(1+x)

= 1+ x + \sum\limits_{i=1}^{k}b_i x^i (1+x)

= 1+x + \sum\limits_{i=1}^{k}(b_i x^i +b_i x^{i+1})

= 1+x +\sum\limits_{i=1}^{k}b_i x^i + \sum\limits_{i=1}^{k} b_i x^{i+1}

= 1+x + (b_1 x + b_2 x^2 +... +b_k x^k) + (b_1 x^2  + ... + b_{k-1} x^k + b_k x^{k+1})

= 1+ (b_1+1)x + (b_2 + b_1) x^2 + ... + (b_k  + b_{k-1}) x^k + b_k x^{k+1}

= 1 +a_1 x + a_2 x^2 + ... + a_k x^k + a_{k+1} x^{k+1}

where a_1 = b_1+1, a_2=b_2+b_1, ..., a_k = b_k + b_{k-1}, a_{k+1} = b_k.

Once (1) is established, we proceed to step 2) to construct a_k:

From (1),

\frac{d^k}{dx^k}(1+x)^n = \frac{d^k}{dx^k}(1+a_1 x + a_2 x^2 + ... + a_k x^k + ... +a_n x^n).

That is

n(n-1)(n-2)...(n-k+1)(1+x)^{n-k} = k(k-1)(k-2)...1 \cdot  {a_k} + \sum\limits_{i=1}^{n-k} c_i x^i\quad\quad\quad(3)

where c_is are constants.

Let x = 0, (3) becomes

n(n-1)(n-2)...(n-k+1) \cdot 1= k(k-1)(k-2)...1 \cdot {a_k} + 0

i.e.,

n(n-1)(n-2)...(n-k+1) = k!\;a_k\quad\quad\quad(4)

Solving (4) for a_k gives

a_k = \frac{n(n-1)(n-2)...(n-k+1)}{k!}.

Since

\frac{n(n-1)(n-2)...(n-k+1)}{k!} = \frac{n(n-1)(n-k+1)\boxed{(n-k)(n-k-1)...1}}{\boxed{(n-k)(n-k-1)...1}\;k!}=\frac{n!}{(n-k)!\;k!},

a_k is often expressed as

a_k = \frac{n!}{(n-k)!\;k!}

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s